

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Molecular Structure of Heterocycles: NMR Spectroscopy, Semiempirical MO Calculations and X-Ray Diffraction of 3,3a,4,5,6,7-Hexahydro-3-trichloromethyl[2,1]benzoisoxazole

Marcos A. P. Martins^a; Alex F. C. Flores^a; Rogério A. Freitag^a; Nilo Zanatta^a; Manfredo Hörner^a; Adailton J. Bortoluzzi^a

^a Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil

To cite this Article Martins, Marcos A. P. , Flores, Alex F. C. , Freitag, Rogério A. , Zanatta, Nilo , Hörner, Manfredo and Bortoluzzi, Adailton J.(1997) 'Molecular Structure of Heterocycles: NMR Spectroscopy, Semiempirical MO Calculations and X-Ray Diffraction of 3,3a,4,5,6,7-Hexahydro-3-trichloromethyl[2,1]benzoisoxazole', *Spectroscopy Letters*, 30: 4, 661 – 675

To link to this Article: DOI: 10.1080/00387019708006690

URL: <http://dx.doi.org/10.1080/00387019708006690>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Molecular Structure of Heterocycles: NMR Spectroscopy, Semiempirical MO Calculations and X-Ray Diffraction of 3,3a,4,5,6,7-Hexahydro-3-trichloromethyl[2,1]benzoisoxazole

key words: [2,1]benzoisoxazoles, NMR, Crystal and molecular structure, MO calculations, AM1

Marcos A. P. Martins^{*}, Alex F. C. Flores, Rogério A. Freitag, Nilo Zanatta, Manfredo Hörner and Adailton J. Bortoluzzi

Departamento de Química, Universidade Federal de Santa Maria
97.119-900 Santa Maria, RS, Brazil
FAX 55 55 226-1259

ABSTRACT

¹H and ¹³C NMR data, AM1 calculations and X-ray diffraction in 3,3a,4,5,6,7-hexahydro-3-trichloromethyl[2,1]benzo isoxazole (1), obtained from the cyclization of trichloroacetyl cyclohexanone with hydroxylamine, are reported. ¹H and ¹³C NMR data shown that only one pair of the diastereoisomers was

^{*}Author to whom the correspondence should be addressed.

obtained and the AM1 calculations indicated that **1a** (3S3aS/3R3aR) is 2.63 kcal.mol⁻¹ more stable than **1b** (3S3aR/3R3aS). The X-Ray diffraction data confirmed that only the structure **1a** was obtained.

Crystals of **1** (C₈H₁₀Cl₃NO₂, M_r = 258.52) were obtained from acetone/n-hexane solution. The compound crystallizes in the monoclinic space group *P*2₁/c with the cell dimensions *a* = 10.153(2), *b* = 8.271(2) and *c* = 14.225(3) Å, β = 103.8(3) $^\circ$, *V* = 1160.0(4) Å³, *Z* = 4, *D*_{calcd.} = 1.480 Mg/m³, λ (Mo_Kα) = 0.71073 Å, μ = 0.764 mm⁻¹, *F*(000) = 528, *T* = 293(2) K, *R* = 7.31 % and *R*_W = 17.91 % for an *F*² refinement on unique data with 2082 reflections and 1994 independent (*R*_{int} = 6.70%) were collected.

INTRODUCTION

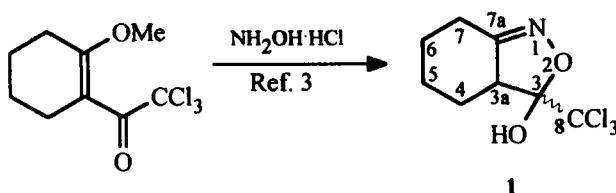
As a part of our research program we have reported in a previous work that β -alkoxyvinyltrihalomethyl ketones react with hydroxylamine to give regiospecifically 5-halomethyl-4,5-dihydroisoxazoles¹⁻⁵. On the other hand, when the 4,5-dihydroisoxazole ring bears an alkyl-substituent in the 4-position a ring with two chiral centers is formed. This fact suggests the presence of two pairs of diastereoisomers 3S4S/3R4R and 3S4R/3R4S as the reaction product.

The aim of this work is to study the molecular structure of a 4-alkyl substituted 4,5-dihydroisoxazole ring using ¹H and ¹³C NMR spectroscopy, semiempirical MO calculations and X-ray diffraction tools. For this purpose we used the 3,3a,4,5,6,7-hexahydro-3-trichloromethyl-3-hydroxy-[2,1]-benzoisoxazole **1** as the substrate (Scheme 1). Experimental data of the molecular geometry of this compound in the gaseous, liquid, or solid phases are not available.

RESULTS AND DISCUSSION

Synthesis

The synthesis of 3,3a,4,5,6,7-hexahydro-3-trichloromethyl-3-hydroxy-[2,1]-benzoisoxazole (**1**) from the cyclization of 2-trichloroacetyl cyclohexanone with hydroxylamine hydrochloride was developed in our laboratory (**Scheme 1**)³.


NMR Spectroscopy

Although from the synthetic procedure was expected to obtain two pairs of the diastereoisomers for compound **1** [**1a** (3S3aS/3R3aR) and **1b** (3S3aR/3R3aS)], the ¹H and ¹³C NMR spectra exhibited only a doublet of doublets for H3a ($J^3\{H3a-H4a\} = 10.90$ Hz and $J^3\{H3a-H4b\} = 6.40$ Hz) and just one line for each of these carbons on the proton noise decoupled spectrum (¹³C{¹H}), Table 1. To obtain some additional information about the structure of compound **1**, theoretical Karplus curve⁶ (Eq. 1) was used to calculate the coupling constants, $J^3\{H3a-H4a\}$ and $J^3\{H3a-H4b\}$, of **1a** and **1b**.

$$J^3\{H3a-H4\} = 4.22 - 0.5 \cos \phi + 4.5 \cos 2\phi \quad (1)$$

In the Eq. 1, ϕ is the dihedral angle (in degrees), H3a-H4a or H3a-H4b, obtained by AM1 calculations. Table 1 shows the calculated $J^3\{H3a-H4a\}$ and $J^3\{H3a-H4b\}$ coupling constants (Eq. 1) and the dihedral angles for **1a** and **1b**.

Considering that the original Karplus curve⁶ (Eq. 1) has accounted that experimental values are generally 2-4 Hz higher than those obtained by theoretical calculations, we believe that the calculated $J^3\{H3a-H4a\}$ and $J^3\{H3a-H4b\}$ is in a good agreement with those observed experimentally (Table 1). However, these

Scheme 1

Table 1

Selected ^1H and ^{13}C NMR data^a of compound 1.

^1H NMR δ	$J^3\{\text{H}3\text{a}-\text{H}4\}$ Hz		Dihedral angle ^c (degrees)		^{13}C NMR δ			
	exp.	calcd. ^b	1a	1b	C3	C3a	C7a	C8
			10.9 3.41	8.92 6.4	8.98 2.84	169.64 51.88	170.71 <i>ax.</i> 51.55 <i>eq.</i>	109.5 52.1

^aThe NMR-spectra were recorded on a Bruker AC 80 (^1H at 80 MHz and ^{13}C at 20MHz) in chloroform-d₁/TMS.

^bCalculated from Equation 1.

^cObtained from AM1 calculations (see experimental). *ax.* = axial, *eq.* = equatorial.

results are not sufficient to assign which are the two pairs of the diastereoisomers (**1a** or **1b**) of compound 1. Thus, the results obtained from the NMR spectroscopy suggest only one pair of diastereoisomers was obtained: **1a** (3S3aS/3R3aR) or **1b** (3S3aR/3R3aS).

Semiempirical MO Calculations and X-Ray Diffraction data

The bond lengths, bond angles and dihedral angles for compound 1 obtained from the AM1 calculations⁷ and X-ray diffraction (in monocrystal, see experimental) are presented in Tables 2, 3, 4.

The AM1 calculations⁷ performed showed that **1a** is 2,63 kcal.mol⁻¹ more stable than **1b**. Although the influence of intermolecular interactions, which appear in a certain extent in the X-ray data, but not in the AM1 calculations, was observed that for most of the geometrical parameters the AM1 calculations done on **1a** gave very close values to those determined in crystal.

The simple linear regressions between experimental bond lengths, bond angles and dihedral angles (X-ray data) and those calculated (AM1 data) for **1a** and **1b** were made. The results show that both experimental and calculated bond lengths, bond angles present similar correlation coefficients for **1a** and **1b** [bond lengths (**1a**) $r = 0.855$, (**1b**) $r = 0.846$; bond angles (**1a**) $r = 0.929$, (**1b**) $r = 0.923$]. However, the dihedral angle correlation shows that only calculated data for **1a** exhibit an excellent correlation coefficient [dihedral angles (**1a**) $r = 0.998$, (**1b**) $r = 0.772$].

On the other hand, when some bond angles are compared (Table 3) is possible to observe an excellent agreement between the X-ray and AM1 calculation data of structure **1a** but not for **1b**. For example, while the bond angle of the atoms C3a-C3-C8 for **1a** obtained by AM1 calculations is 114.79° and determined by X-ray is 114.2°, the same bond angle for **1b** is 120.72°. Furthermore, the bond angle of the atoms C3a-C3-OH for **1a** obtained by AM1 calculations is 111.01° and determined by X-ray is 111.2°, the same bond angle for **1b** is 106.90°. Table 4 shows similar agreement when some dihedral angles determined by X-Ray diffraction with those calculated by AM1 for **1a** and **1b** were compared. The most illustrative data shown in Table 4 are the dihedral angles of the atoms C8-C3-C3a-C4 and HO-C3-C3a-C4 that have the X-ray data (-112.8° and 12.6°) similar to those obtained from AM1 calculations (-118.05° and 11.86°) for **1a** (3S3aS/3R3aR).

A perspective view of the molecular structure of **1a** and **1b** with optimized geometry by AM1 calculations is shown in Figure 1.

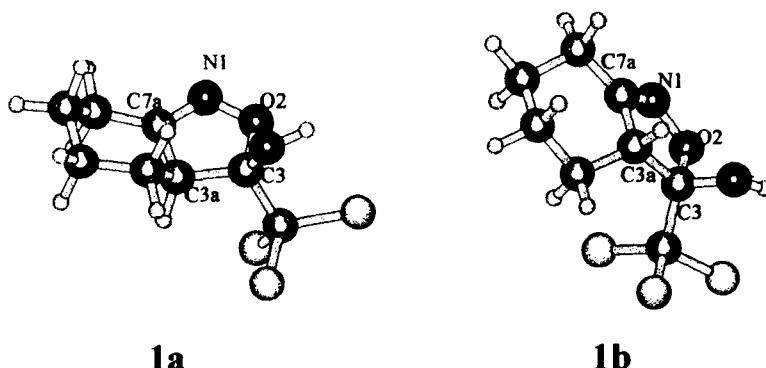


Figure 1. Perspective view of the molecular structure of 3,3a,4,5,6,7-Hexahydro-3-trichloromethyl[2,1]benzoisoxazole (1). The optimized geometries were obtained by AM1 calculations .

The isoxazole ring can be considered as essentially planar because the sum of the angles within the ring is $538.6(4)^\circ$ and the root means square atomic displacements from the mean plane are 0.050 \AA . This value is in good agreement with 539.8° obtained by AM1 calculations. The planarity of the isoxazole ring is attributed to the C-N double bond ($1.277(7) \text{ \AA}$). This conclusion agrees with the AM1 calculations that demonstrate a considerable deviation of the planarity of the isoxazole ring when a single bond order is attributed to the C-N bond. In this case, the geometry optimized molecule of *cis*-benzoisoxazolidine derivative showed the sum of the angles within the ring of 532.76° . Furthermore, when a simulation is carried out considering a double bound order for the C-N bond and excluding the cyclohexane ring of the molecule, the AM1 calculations furnish the sum of angles within the remaining five-membered ring is 539.9° . These observations reinforce the

Table 2

Selected bond lengths calculated by AM1 and determined by X-Ray diffraction for compound **1** (with e.s.d.'s in parenthesis).

Atoms	Bond Length (Å)	Bond Length (Å)	Bond Length (Å)
	Calcd. AM1	X-Ray ^b	Calcd. AM1
	1a^a (3S3aS/3R3aR)	1b^a (3S3aR/3R3aS)	
N1-O2	1.3198	1.431 (6)	1.3178
O2-C3	1.4785	1.436 (6)	1.4803
C3-C3a	1.5561	1.508 (6)	1.5619
C3a-C7a	1.5302	1.480 (8)	1.5299
C7a-N1	1.3165	1.277 (7)	1.3166
C3-C8	1.5493	1.549 (7)	1.5491
C3-OH	1.3931	1.384 (6)	1.3983
C3a-C4	1.5126	1.537 (7)	1.5091
C4-C5	1.5177	1.524 (8)	1.5194
C5-C6	1.5160	1.494 (10)	1.5151
C6-C7	1.5210	1.524 (10)	1.5195
C7-C7a	1.4822	1.477 (9)	1.4826

^a**1a**, E= -2274.30 kcal.mol⁻¹; **1b**, E= -2271.67 kcal.mol⁻¹.

^bSee Experimental.

conclusion that the planarity of the isoxasole ring can be attributed essentially to the C-N double bond.

The final position parameters for non-hydrogen atoms and the corresponding selected bond lengths and angles of **1** are given in Tables 5, 6, 2, and 3, respectively. An ORTEP¹² drawing of the structure of **1** is shown in Figure 2. The lists of the observed and calculated structure factors, anisotropic thermal parameters and hydrogen atom coordinates are available from the authors upon request.

The regiochemistry of the reaction can be explained from the intermediate **2** obtained in the cyclization process. This intermediate is 11.86 kcal.mol⁻¹ less stable than **1a**, and can produce **1a** or **1b** by a tautomeric equilibrium (Scheme 2).

Table 3

Selected bond angles calculated by AM1 and determined by X-Ray diffraction for compound 1 (with e.s.d.'s in parenthesis).

Atoms	Bond Angle (degrees)	Bond Angle (degrees)	Bond Angle (degrees)
	Calcd. AM1 1a (3S3aS/3R3aR)	X-Ray ^a	Calcd. AM1 1b (3S3aR/3R3aS)
N1-O2-C3	111.91	108.3 (4)	112.17
O2-C3-C3a	104.12	106.0 (4)	103.88
C3-C3a-C7a	99.71	101.0 (4)	99.73
C3a-C7a-N1	112.55	114.6 (5)	112.64
C7a-N1-O2	111.48	108.7 (5)	111.51
O2-C3-C8	109.18	105.3 (4)	108.09
C8-C3-OH	113.17	110.1 (5)	112.41
C3a-C3-C8	114.79	114.2 (4)	120.72
C3a-C3-OH	111.01	111.2 (4)	106.90
C3-C3a-C4	115.92	118.2 (5)	120.76
C3a-C4-C5	109.71	110.0 (5)	109.56
C4-C5-C6	112.18	111.9 (5)	112.00
C5-C6-C7	112.48	112.2 (6)	112.21
C6-C7-C7a	109.54	110.3 (6)	110.03
C7-C7a-N1	129.32	124.3 (6)	128.71

^aSee Experimental.

The theoretical and experimental data of the product obtained show that the tautomeric equilibrium yields only the structure **1a** (3S3aS/3R3aR), that has the most stable configuration (**1a** is 2.63 kcal.mol⁻¹ more stable than **1b**). The configuration **1a** has the less strained condensed ring system, where the bulky CCl₃ group is *cis* to H3a and OH group is *cis* to the C-C bond of cyclohexane ring.

CONCLUSIONS

¹H and ¹³C NMR spectroscopy method showed a poor contribution on the molecular geometry study of 3,3a,4,5,6,7-hexahydro-3-trichloromethyl-3-hydroxy-

Table 4

Selected dihedral angles calculated by AM1 and determined by X-Ray diffraction for compound 1 (with e.s.d.'s in parenthesis).

Atoms	Dihedral Angle (Degrees)	Dihedral Angle (Degrees)	Dihedral Angle (Degrees)
	Calcd. AM1 1a (3S3aS/3R3aR)	X-Ray ^a	Calcd. AM1 1b (3S3aR/3R3aS)
N1-O2-C3-C3a	-4.88	-11.9 (5)	-2.71
O2-C3-C3a-C7a	4.36	10.6 (5)	2.76
C3-C3a-C7a-N1	-3.02	-6.2 (6)	-2.32
C3a-C7a-N1-O2	0.16	-1.0 (6)	0.79
C7a-N1-O2-C3	3.12	8.3 (5)	1.30
C8-C3-C3a-C4	-118.05	-112.8 (6)	3.27
OH-C3-C3a-C4	11.86	12.6 (7)	-126.82
C3-C3a-C4-C5	-164.90	-164.6 (5)	-167.49
C3a-C4-C5-C6	58.17	58.1 (7)	58.94
C4-C5-C6-C7	-57.37	-58.6 (8)	-58.59
C5-C6-C7-C7a	49.96	48.2 (9)	49.49
C6-C7-C7a-C3a	-48.40	-43.5 (8)	-45.76
C7-C7a-C3a-C4	50.96	44.6 (7)	47.97
C6-C7-C7a-N1	127.29	133.2 (7)	132.76

^aSee Experimental.

[2,7]-benzoisoxazole (1). The molecular geometry of the compound 1 was accurately determined by AM1 theoretical method. The differences found between X-ray and AM1 data are within the range of the standard deviations of the AM1 method and the influence of intermolecular interactions that appear in the crystal structure. Finally, from the X-ray diffraction were possible to conclude that the synthetic procedure used³ yield only the pair of the diastereoisomers 1a (3S3aS/3R3aR) of compound 1.

Table 5

Crystal data and structure refinement for **1**, with e.s.d.'s in parenthesis.

Empirical formula	C ₈ H ₁₀ Cl ₃ NO ₂
Formula weight	258.52
Temperature (K)	293(2)
Wavelength (Å)	0.71073
Crystal system	Monoclinic
Space group	P2 ₁ /c
Unit cell dimensions (Å)	<i>a</i> = 10.153(2) <i>b</i> = 8.271(2) <i>c</i> = 14.225(3) <i>β</i> = 103.81(3)
Volume (Å ³), Z	1160.0(4), 4
Density (calculated) (Mg/m ³)	1.480
Absorption coefficient (mm ⁻¹)	0.764
F(000)	528
Crystal size (mm) / Colour	0.66 x 0.26 x 0.07 /colourless
Theta range for data collection (°)	3.17 to 24.95
Limiting indices	-11 ≤ <i>h</i> ≤ 12, 0 ≤ <i>k</i> ≤ 9, -16 ≤ <i>l</i> ≤ 0
Reflections collected	2082
Independent reflections	1994 [R(int) = 0.0670]
Reflections observed	1168
Criterion for observation	[I > 2σ(I)]
Absorption correction	None
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	1584 / 0 / 128
Goodness-of-fit on F ²	1.074
Final R indices [I > 2σ(I)]	R ₁ = 0.0731, wR ₂ = 0.1791
Maximal (Δσ)	0.000
Extinction coefficient	0.010(5)
Largest diff. peak and hole (e.Å ⁻³)	0.519 and -0.680

Table 6

Atomic coordinates ($\cdot 10^4$) and equivalent isotropic displacement parameters ($\text{\AA}^2 \cdot 10^3$) for 1, with e.s.d.'s in parenthesis.

Atom	x	y	z	U(eq) ^a
Cl(1)	4088(2)	141(2)	8794(1)	62(1)
Cl(2)	4012(2)	2476(2)	7285(2)	68(1)
Cl(3)	2327(2)	2892(3)	8633(2)	79(1)
O(2)	1175(4)	-351(5)	7871(3)	41(1)
O	1008(4)	1551(5)	6663(3)	45(1)
N(1)	998(5)	-1993(6)	7549(4)	44(1)
C(3)	1886(5)	499(7)	7263(4)	33(1)
C(3a)	2403(5)	-778(7)	6685(3)	32(1)
C(7a)	1676(6)	-2223(7)	6911(4)	39(1)
C(4)	2161(6)	-541(8)	5585(4)	49(2)
C(8)	3016(6)	1459(8)	7966(4)	45(2)
C(5)	2398(7)	-2126(9)	5105(5)	59(2)
C(7)	1701(8)	-3761(9)	6388(6)	65(2)
C(6)	1499(8)	-3445(10)	5307(5)	72(2)

^aU(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

EXPERIMENTAL

Compound

3,3a,4,5,6,7-Hexahydro-3-trichloromethyl-3-hydroxy-[2,1]-benzoisoxazole

(1) was synthesized by the cyclization of 2-trichloroacetyl cyclohexanone with hydroxylamine hydrochloride as reported in Reference 3.

NMR Spectroscopy

¹H and ¹³C NMR spectra were recorded on a BRUKER AC-80 spectrometer (¹H at 80 MHz and ¹³C at 20 MHz) in chloroform-d₁/TMS.

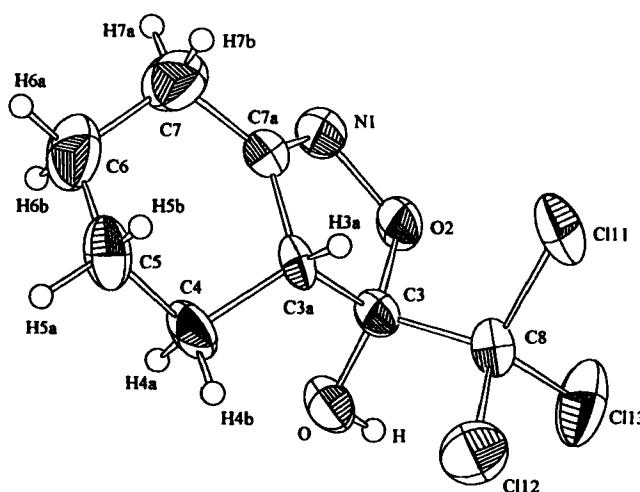
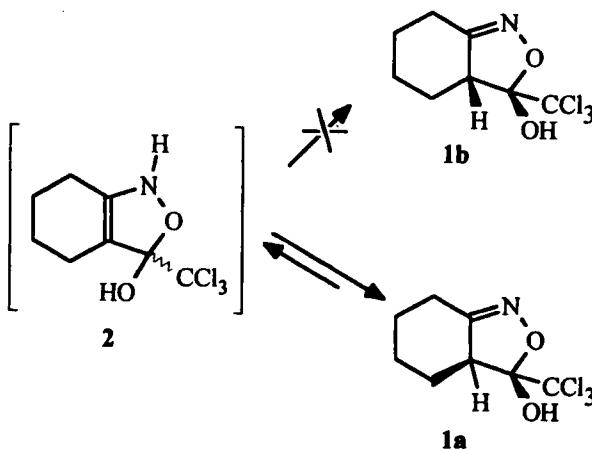



Figure 2. ORTEP¹² plot with atom-labeling scheme of the structure of **1**, displacement ellipsoids at the 50% level.

Scheme 2

AM1 Calculations

The calculations were carried out by the Austin Model 1 (AM1) semiempirical method⁷, implemented in the HyperChem 4.5 package (1995)⁸. Geometries were completely optimized without fixing any parameter, thus bringing all geometric variables to their equilibrium values. The energy minimization protocol employs the Polak-Ribiere algorithm, a conjugated gradient method⁸. Convergence to a local minimum is achieved when the energy gradient is $\leq 0.01 \text{ kcal.mol}^{-1}$. The calculations were performed on a PC Pentium-166MHz Megatropic computer equipped with an ink jet Epson Stylus Color II (720 dpi) printer.

X-Ray diffraction

Table 5 summarizes the crystal data and structure refinement parameters for 1. Diffractometric intensity data were collected on an automatic four circle diffractometer (Enraf-Nonius CAD4)⁹ using graphite-monochromated $\text{MoK}\alpha$ radiation and ω -2 θ scans with a scan speed of 45 sec./reflection. At every 60 min. the orientation of the crystal was controlled by three standard reflections and no appreciable intensity loss was observed during the data collection. The structure were solved using the direct methods employing SHELXS-86 program¹⁰ and all non-hydrogen atoms were located by subsequent Fourier difference synthesis. For structure refinement the SHELXL-93 program¹¹ was employed and the full-matrix least-squares method minimized on $\sum w(F_o^2 - F_c^2)^2$ where w is a weighting scheme detailed below. All non-hydrogen atoms were refined using anisotropic thermal parameters. The positions of the hydrogen atoms were calculated based on the geometry of the molecule and the thermal displacement parameters were refined isotropically on a groupwise basis. For the final refinement of the structure an

isotropic extinction correction was included. Scattering factors for all atoms were as in the SHELXL-93 program¹¹.

A transparent colourless crystal of **1** with approximate dimensions 0.66 x 0.26 x 0.07 mm was used for intensity data collection at 293(2) K. The unit cell dimensions and the orientation matrix for the data collection resulted from a least square fit of 23 reflections in the range 17.66° – 21.78°. The automatic intensity search and indexing method indicated a monoclinic cell symmetry. A total of 2082 reflections were collected involving one quarter of the Ewald sphere with the limiting indices $-11 \leq h \leq 12$, $0 \leq k \leq 9$, $-16 \leq l \leq 0$ and the theta range of 3.17 to 24.95. Based on the observed reflections conditions, E statistics and a successful structure solution, the space group was chosen to be $P2_1/c$. Lorentz and polarization correction was made on the intensity data and the observed intensity decay was less than 1.3%. After merging of the equivalent reflections ($R_{\text{int.}} = 6.70\%$), 1994 reflections were unique. Due to the observed low linear absorption coefficient (0.764 mm⁻¹), no absorption correction was made. The final refinement including 128 parameters gave $R = 7.31\%$ and $R_w = 17.91\%$ with the weighting scheme, $w = 1/[s^2(F_o^2) + (0.1398P)^2 + 0.00P]$ where $P = (F_o^2 + 2F_c^2)/3$ with a maximal shift/e.s.d. = 0.000.

Acknowledgments

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq / PADCT), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) for financial support and to Prof. Dr. Ademir Neves and Prof. Dr. Ivo Vencato (UFSC, Florianópolis, SC, Brazil) for the CAD4 - ENRAF-NONIUS Diffractometer facilities. The fellowships from CNPq, CAPES and FAPERGS are also acknowledged.

REFERENCES

1. M.A.P. Martins, A. Colla, G. Clar, P. Fischer, S. Krimmer, *Synthesis* **1991**, 6, 483-486.
2. M.A.P. Martins, A.N. Zoch, H.G. Bonacorso, N. Zanatta, G. Clar, *J. Heterocyclic Chem.* **1995**, 32, 739-741.
3. M.A.P. Martins, Alex F.C. Flores, Rogério Freitag, Nilo Zanatta, *J. Heterocyclic Chem.* **1995**, 32, 731-733.
4. M.A.P. Martins, G.M. Siqueira, G.P. Bastos, H.G. Bonacorso, N. Zanatta, *J. Heterocyclic Chem.* **1996**, 33, *in press*.
5. M.A.P. Martins, Alex F.C. Flores, Rogério A. Freitag, Nilo Zanatta, *J. Heterocyclic Chem.* **1996**, 33, *in press*.
6. M. Karplus, *J. Am. Chem. Soc.* **1963**, 85, 2870.
7. M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, J.J.P. Stewart, *J. Am. Chem. Soc.* **1990**, 112, 3902.
J.J.P. Stewart, in *Reviews of Computational Chemistry*, K. Lipkovitz, D.B. Boyd (Eds.), VCM Publishers, New York, 1990.
8. Hypercube, Inc., HyperChem 4.5 package, Waterloo, Ontario, Canada, 1995.
HyperChem Manual, *Computational Chemistry*, Waterloo, Ontario, Canada, 1994.
9. CAD4, *Automatic Four Circle Diffractometer ENRAF-NONIUS*, Delft, Holland.
10. G.M. Sheldrick, *SHELXS-86, Program for Crystal Structure Solution*, University of Göttingen, Germany (1986).
11. G.M. Sheldrick, *SHELXL-93, Program for Crystal Structure Refinement*, University of Göttingen, Germany (1993).
12. C.K. Johnson, *ORTEP, A Thermal-Ellipsoid Plot Program*. Tennessee: Oak Ridge National Laboratory, 1965.

Date Received: October 30, 1996
Date Accepted: December 12, 1997